Pricing and hedging derivative securities with neural networks: Bayesian regularization, early stopping, and bagging

نویسندگان

  • Ramazan Gencay
  • Min Qi
چکیده

We study the effectiveness of cross validation, Bayesian regularization, early stopping, and bagging to mitigate overfitting and improving generalization for pricing and hedging derivative securities with daily S&P 500 index daily call options from January 1988 to December 1993. Our results indicate that Bayesian regularization can generate significantly smaller pricing and delta-hedging errors than the baseline neural-network (NN) model and the Black-Scholes model for some years. While early stopping does not affect the pricing errors, it significantly reduces the hedging error (HE) in four of the six years we investigated. Although computationally most demanding, bagging seems to provide the most accurate pricing and delta hedging. Furthermore, the standard deviation of the MSPE of bagging is far less than that of the baseline model in all six years, and the standard deviation of the average HE of bagging is far less than that of the baseline model in five out of six years. We conclude that they be used at least in cases when no appropriate hints are available.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pricing derivative securities pdf

This article shows that the one-state-variable interest-rate models of.There are an enormous number of derivative securities being traded in financial markets. And just define those securities that we shall be pricing. Definition.We present a model for pricing and hedging derivative securities and option portfolios in an. In this equation, the pricing volatility is selected dynamically from.Bec...

متن کامل

A Nonparametric Approach to Pricing and Hedging Derivative Securities Via Learning Networks

We propose a nonparametric method for estimating the pricing formula of a derivative asset using learning networks. Although not a substitute for the more traditional arbitrage-based pricing formulas, network-pricing formulas may be more accurate and computationally more efficient alternatives when the underlying asset's price dynamics are unknown, or when the pricing equation associated with t...

متن کامل

Optimizing of Iron Bioleaching from a Contaminated Kaolin Clay by the Use of Artificial Neural Network

In this research, the amount of Iron removal by bioleaching of a kaolin sample with high iron impurity with Aspergillus niger was optimized. In order to study the effect of initial pH, sucrose and spore concentration on iron, oxalic acid and citric acid concentration, more than twenty experiments were performed. The resulted data were utilized to train, validate and test the two layer artificia...

متن کامل

An Application of Wavelet Analysis to Pricing and Hedging Derivative Securities

This work provides an application of wavelet analysis to pricing and hedging path–dependent contingent claims within the framework of the Black–Scholes model.

متن کامل

Modeling Plasma Fabric Surface Treatment Using Fuzzy Logic and Artificial Neural Networks

In this paper, Artificial Neural Networks (ANNs) are used to model the effect of atmospheric air-plasma treatment on fabric surfaces with various structures. In order to reduce the complexity of the models and increase the knowledge and comprehension of the underlying process, a fuzzy sensitivity variation criterion is used to select the most relevant parameters which are taken as inputs of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE transactions on neural networks

دوره 12 4  شماره 

صفحات  -

تاریخ انتشار 2001